Global Stabilization of a Korteweg-De Vries Equation With Saturating Distributed Control
نویسندگان
چکیده
This article deals with the design of saturated controls in the context of partial differential equations. It focuses on a Korteweg–de Vries equation, which is a nonlinear mathematical model of waves on shallow water surfaces. Two different types of saturated controls are considered. The well-posedness is proven applying a Banach fixed-point theorem, using some estimates of this equation and some properties of the saturation function. The proof of the asymptotic stability of the closed-loop system is separated in two cases: (i) when the control acts on all the domain, a Lyapunov function together with a sector condition describing the saturating input is used to conclude on the stability; (ii) when the control is localized, we argue by contradiction. Some numerical simulations illustrate the stability of the closed-loop nonlinear partial differential equation.
منابع مشابه
Forced oscillations of a damped Korteweg-de Vries equation on a periodic domain
In this paper, we investigate a damped Korteweg-de Vries equation with forcing on a periodic domain $mathbb{T}=mathbb{R}/(2pimathbb{Z})$. We can obtain that if the forcing is periodic with small amplitude, then the solution becomes eventually time-periodic.
متن کاملA Novel Approach for Korteweg-de Vries Equation of Fractional Order
In this study, the localfractional variational iterationmethod (LFVIM) and the localfractional series expansion method (LFSEM) are utilized to obtain approximate solutions for Korteweg-de Vries equation (KdVE) within local fractionalderivative operators (LFDOs). The efficiency of the considered methods is illustrated by some examples. The results reveal that the suggested algorithms are very ef...
متن کاملGlobal Stabilization of the Generalized Korteweg--de Vries Equation Posed on a Finite Domain
This paper is concerned with the internal stabilization of the generalized Korteweg-de Vries equation on a bounded domain. The global well-posedness and the exponential stability are investigated when the exponent in the nonlinear term ranges over the interval [1, 4). The global exponential stability is obtained whatever the location where the damping is active, confirming positively a conjectu...
متن کاملThe tanh method for solutions of the nonlinear modied Korteweg de Vries equation
In this paper, we have studied on the solutions of modied KdV equation andalso on the stability of them. We use the tanh method for this investigationand given solutions are good-behavior. The solution is shock wave and can beused in the physical investigations
متن کاملNew analytical soliton type solutions for double layers structure model of extended KdV equation
In this present study the double layers structure model of extended Korteweg-de Vries(K-dV) equation will be obtained with the help of the reductive perturbation method, which admits a double layer structure in current plasma model. Then by using of new analytical method we obtain the new exact solitary wave solutions of this equation. Double layer is a structure in plasma and consists of two p...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- SIAM J. Control and Optimization
دوره 55 شماره
صفحات -
تاریخ انتشار 2017